中国
Alternate Text

杏彩体育注册FEM 前沿研究:智能工业数据解析与优化

Alternate Text

产品简介

  单位:智能工业数据解析与优化教育部重点实验室,东北大学人工智能与大数据科学中心,工业智能与系统优化前沿科学中心  导语:数据解析与优化是传统工业智能化转型升级的核心。本文结合国家工业智能化发展的重大战略需求,分别从理论基础、技术创新、工程应用等互为支撑的方面,对智能工业数据解析与优化进行了系统研究。提出了融合数据解析与优化的核心理论,研究了共性的工业智能与系统优化技术,构建了智能工业的感知、发现、决策、执行递阶体系结构。利用传感器对工业物理过程进行智能感知,基于工业大数据信息,通过数据解析技

详情

  单位:智能工业数据解析与优化教育部重点实验室,东北大学人工智能与大数据科学中心,工业智能与系统优化前沿科学中心

  导语:数据解析与优化是传统工业智能化转型升级的核心。本文结合国家工业智能化发展的重大战略需求,分别从理论基础、技术创新、工程应用等互为支撑的方面,对智能工业数据解析与优化进行了系统研究。提出了融合数据解析与优化的核心理论,研究了共性的工业智能与系统优化技术,构建了智能工业的感知、发现、决策、执行递阶体系结构。利用传感器对工业物理过程进行智能感知,基于工业大数据信息,通过数据解析技术实现生产、物流和能源系统的计量、诊断和预报,在此基础上对生产与物流计划、调度、操作和控制进行系统优化决策,从而有效提高钢铁等流程工业的资源、能源和设备利用率,达到提高产品质量、降低生产和物流成本等目的。数据解析与优化融合理论与技术对于提升传统工业精细化、智能化管理水平,减少环境污染、保障工业可持续性发展具有重大意义。

  工业智能化已成为提升我国工业整体竞争力的核心技术,它将颠覆传统工业的生产流程、生产模式和管理方式,实现对生产要素高度灵活的配置和大规模定制化生产,有力地推动传统工业加快向高效化、精细化、绿色化方向转型升级,对提升我国工业水平、实现工业强国具有重要意义。

  钢铁工业是典型的高资源消耗、高能耗、高污染工业。我国是钢铁生产大国,钢铁工业正面临着传统钢铁企业转型升级的战略发展需要和新型钢铁企业的可持续性发展需要的双层压力。因此,需要通过制造过程的智能化改造升级实现敏捷制造和节能减排,最终达到智能化和绿色化。Yin(2017)指出钢厂智能化既要重视数字化信息网络系统的研发,更要重视制造流程(物理系统)中物质流网络、能量流网络的结构优化和运行程序优化,通过以制造流程物理系统结构优化和数字化信息系统相互融合来实现钢厂智能化。Yin(2016)对冶金流程动态运行的物理本质进行了深入的理论探索,提出了建立新一代钢铁制造流程的理论框架和钢厂动态精准设计的概念、理论和方法。Shao(2017)给出智能工业的定义,智能工业是指在工业大数据分析的基础上,最大限度地利用信息、通信和优化技术,实现机器、资源、产品和人的协调。

  近年来,钢铁工业生产计划与调度优化的应用实践引起了广泛关注。许多研究人员在钢铁工业生产调度理论与实践方面进行了深入的研究,取得了相关的研究成果。Tang等(2001)对钢铁生产过程中关键的计划与调度问题进行了系统综述,将钢铁生产中的调度问题归类为并行批与串行批两种调度模式(2002b; 2012a; 2014a; 2014b; 2016a),其中,并行批调度是指分配在同一批的工件需要同时在设备上进行加工,具有相同的开始和结束时间;串行批调度是指分配在同一批的工件需要依次分时进行加工,具有不同的开始和结束时间。此外,Tang 和 Zhao(2008)从钢铁加热炉生产过程中提炼出了半连续型批调度模型。

  对于炼钢阶段,Tang等(2014a)针对炼钢-连铸生产过程中的合同组批及浇铸宽度决策问题进行研究,通过整数优化方法获得最优组批方案从而提高了炼钢生产效率。Tang等(2014b)针对炼钢-连铸生产动态调度问题,提出了一种改进的增量式差分进化算法。Tang等(2002b)针对炼钢过程中的调度问题进行研究,提出了能够快速获得近优调度方案的拉格朗日松弛和动态规划混合算法,从而确保炼钢生产的顺行和合同的按时交货。

  对于热轧阶段,Yasuda等(1984)研究了热轧生产过程的计划与调度问题,即如何确定钢卷的加工顺序以及如何分配钢卷合同。针对上述问题设计了两阶段求解方法。Lopez等(1998)与Fang和Tsai(1998)分别设计了禁忌搜索算法和遗传算法求解热轧计划与调度问题。

  对于冷轧阶段,Tang等(2016a)针对考虑能耗的冷轧罩式炉调度问题进行研究,设计branch-and-price-and-cut算法对问题进行最优求解,针对实际规模的算例,设计了能够快速获得问题近优解的禁忌搜索算法。Sahay和Kapur(2007)针对连续退火炉过程调度问题,基于生产过程的热转移和退火动力学性能原理建立了数学规划模型,并设计算法求解该模型,提高了连退炉的生产效率。Sahay和Krishnan(2007)根据连续退火过程的特征,建立了能够预测钢卷在退火炉中温度和硬度变化趋势的数学模型并提出相应的求解算法。Verdejo等(2009)针对连续镀锌产线生产调度问题建立了数学规划模型,并设计了禁忌搜索算法获得该问题的可行解。Tang等(2012a)研究了钢涂彩生产中的钢卷调度问题,提出了一种带有复合邻域的禁忌搜索算法,能够快速获得问题的近优解。

  对于物流调度,Tang等(2002a)研究了连铸与热轧工序间板坯库的板坯倒垛问题,针对该问题建立了整数规划模型,并设计了改进的遗传算法。Tang等(2012b)针对钢铁生产物流系统中的倒垛问题建立了线性整数规划模型,并提出一系列有效不等式。对于特殊情况提出多项式时间算法,对于一般情况提出贪婪启发式算法。Tang等(2015b)研究了炼钢工序的装载和运输集成调度问题,其特点是牵引车和半挂车分离操作。Tang等(2015c)将配载问题建立为混合整数规划模型,并提出了五个有效不等式,开发了禁忌搜索算法。Tang等(2019)研究了生产与运输集成调度问题,分别针对在线和离线问题提出了有效算法。

  在其他行业中,同样存在类似生产计划与调度决策问题。Brunaud和Grossmann(2017)研究了流程工业中的多级决策问题。Tang等(2015a; 2016b)研究了物流系统中码头堆场的重倒垛和堆垛问题。Tang 和 Che(2013)研究了能源行业二氧化碳减排政策下的发电调度问题。

  综上,钢铁生产中的管理问题多为复杂的大规模组合优化问题,钢铁生产过程通常包含多阶段生产,每个阶段又包含多个并行机组,并且每个阶段之间通过物流环节衔接,整个生产过程呈复杂的交叉网状结构。在以往的研究中,建立模型时通常假设生产过程要满足一些特定的条件,且模型参数及系统输入-输出关系通过人工经验确定,因此,所建立的模型与实际生产之间存在较大的偏差。

  近年来,运筹学的发展带动了运作管理优化领域的发展。此外,人工智能技术的发展,使得学术界和工业界已经开始意识到开发数据资源的重要性。将运筹优化与人工智能等国际前沿的研究方向与中国的工业智能化战略进行结合,将运筹优化与人工智能的理论和技术研究成果在制造、能源、资源和物流等传统优势工业中进行应用,是国家工业智能化和绿色化发展战略的迫切需求。

  运筹优化是指应用科学的(特别是数学的)方法来优化系统决策过程,许多工程的核心问题最终都可以归结为优化问题。系统优化是综合利用机理、知识、优化实现对客观事物的描述,并在此基础上综合应用多种优化方法进行控制与决策,从而提升系统的整体性能。而人工智能技术能够赋予复杂系统智能分析(如推理、发现、学习)的能力。本文将国际前沿的系统优化与人工智能技术中的数据解析与我国工业背景相结合,提出了智能工业数据解析与优化相融合的创新理论,通过二者的融合进一步提升传统工业的智慧能力,一方面将数据解析融入到系统优化中,在深度认知的基础上提高优化的效率;另一方面将系统优化融入到数据解析中,通过机理、知识、优化的加入,进一步提高解析的精度。

  基于融合数据解析与优化的核心理论(Data Analytics and Optimization,即DAO理论),提出的智能工业数据解析与优化融合研究体系如图1所示。图中第一层圆环代表数据解析与系统优化融合的通用方法;第二层圆环代表共性的智能工业数据解析与优化技术,包括:智能感知(即工业过程的理解与描述)、智能发现(即工况溯源诊断与产品质量预报)、优化执行(即生产过程操作优化与最优控制)、优化决策(即全流程生产与库存计划、生产与物流批调度);第三层圆环代表上述理论、方法、技术在制造、资源、能源及物流系统中的应用,致力于改进和提升工业的智能化水平,实现精细化、绿色化制造。

  数据解析与系统优化融合方法主要包括如下三个方面:1)数据解析与系统优化的融合建模方法,采用系统优化方法对复杂工业系统中可辨识、可量化、静态的部分建立机理模型,采用数据解析方法对复杂工业系统中难以辨识、难以量化、动态时变的部分进行智能解析,弥补机理模型的局限性,最大限度地还原复杂工业系统。2)基于数据解析的高效系统优化方法,通过对优化方法搜索过程进行动态解析,实现优化空间的可视化、透明化,用于指导解空间降维和寻优路径自适应决策,能够显著提高优化效率。3)基于系统优化的高精度数据解析方法,将优化模型和算法引入到数据解析过程中,提高解析算法的学习精度。综上,如图2所示,数据解析与系统优化的深度融合,能够有效提高对客观工业系统的还原度,提高数据解析方法的预测精度,提高工业系统中大规模优化问题的求解效率。

  针对传统基于数学优化的单一建模方法的局限性,提出数据解析与系统优化融合的建模方法,通过对生产和物流作业中的资源数据、能源数据、物流数据、设备数据、质量数据等进行数据解析,实现对调度中的工况和参数的科学计量、诊断、预报,并在输入-输出关系的确定、优化参数的设置、模型的动态时变等方面与传统数学优化模型进行互补融合建模。具体体现在如下方面:

  工业生产过程由于工艺复杂、生产阶段之间相互耦合、操作参数繁多,使得优化模型中的目标函数和复杂约束通常难以给出精确的解析表达式;另一方面,由于微分方程组的求解非常耗时,即使存在精确的优化机理模型,也难以满足实时在线优化的需求。针对上述建模难题,利用数据解析技术对生产过程历史数据进行深度发掘,学习出目标函数、操作参数、复杂工艺限制之间的函数关系,从而实现复杂工业系统输入-输出关系的量化,有效缩小模型与客观系统的间隙,为整个生产过程的科学建模和优化提供有力保障。

  在建立工业系统的优化模型时,需要引入若干模型参数用于表达多目标权重关系、工艺参数、约束系数等。通常采用人工经验、仿真、统计等方法对参数进行配置。但多数情况下,由于工业系统本身的复杂性,常规的方法难以准确反映客观实际,达到参数空间的全局优化。因此,采用数据解析方法对模型参数进行优化配置,将优化模型中的输入、输出关系作为输入量,通过对历史数据的智能解析,得到能够客观还原系统关系的参数值,从而实现复杂工业系统的模型参数的自学习。

  复杂的工业系统往往具有动态、不确定性等特征,工艺约束、管理需求等会随着生产工况的改变而改变,进而导致优化模型中参数、优化对象、优化目标的变化。已有的建模方法多为静态建模,当工况发生改变时,需要人工离线对模型进行调整,无法满足工业系统的实时、快速需求。针对时变的生产工况,将系统优化与数据解析相结合,通过学习、预测、反馈、调整,提出带有反馈闭环结构的优化模型在线调整方法,对模型参数进行自适应修正并对优化方案进行重新调整和再优化。

  针对工业系统优化决策模型具有大规模、多目标、动态、非线性等工程特征,提出融合数据解析的高效系统优化方法。通过机器学习、数理学习、信息学习、强化学习等数据解析技术,对系统优化过程进行动态解析,挖掘优化空间结构特征和寻优路径对优化目标的影响规律等,实现优化空间的可视。


杏彩体育注册 上一篇:无可匹敌 世界上最大的公路牵引车能拉600T! 下一篇:红岩杰狮畅途版亮相 采用可调鞍座设计
取 消 tijiaoAjaxIng?"提交中...":"提交
Alternate Text

杏彩体育平台app

+86-21-68183333

中国上海市浦东新区张江创企天地张东路1761号4号楼804室

杏彩体育平台app

+86-27-84874881

中国湖北武汉经济技术开发区后官湖大道550号

Alternate Text
Alternate Text TOP